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bstract

The effects of various process parameters on caustic current efficiency (CCE) in a zero-gap oxygen-depolarized chlor-alkali cell employing a
tate-of-the-art silver plated nickel screen electrode (ESNS®) were studied. For doing a thorough research, we selected the process parameters
rom both cathodic and anodic compartments. Seven process parameters were studied including anolyte pH, temperature, flow rate and brine
oncentration from the anode side, oxygen temperature and flow rate from the cathode side and the applied current density. The effect of these
arameters on CCE was determined quantitatively. A feed forward neural network model with the Levenberg–Marquardt (LM) back propagation

raining method was developed to predict CCE. Then genetic algorithm (GA) was implemented to neural network model. The highest CCE (98.53%)
as found after 20 times running GA at the following conditions: brine concentration (287 g/L), anolyte temperature (80 ◦C), anolyte pH (2.7),

nolyte flow rate (408 cm3/min), oxygen flow rate (841 cm3/min), oxygen temperature (79 ◦C), and current density (0.33 A/cm2).
2007 Elsevier B.V. All rights reserved.
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. Introduction

The progress of the membrane chlor-alkali technology and
ts additional optimization resulted in a meaningful reduction of
nergy consumption in chlor-alkali process. The state-of-the-art
embrane reactors operate at voltages as low as 3.2 V at a typ-

cal current density of 0.4 A/cm2 [1]. Brine electrolysis is still
ne of the most energy-intensive industrial operations, despite

he tremendous efforts of the chlor-alkali industry to reduce the
nergy consumption. It is accepted that the developed membrane
echnology has reached the theoretical end-point on energy con-

Abbreviations: ACA, advanced chlor alkali; CCE, caustic current efficiency
%); DSA, dimensionally stable anode; ESNS, silver-plated nickel screen elec-
rode; HF, humidifier; LM, Levenberg–Marquardt; MLP, multilayer perceptron;
K, tank.
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umption. Therefore, more optimization of this process is not
xpected to result in a significant cut of the energy consump-
ion. Nevertheless, by replacing the hydrogen-evolving cathode
n a membrane cell with an oxygen-depolarized cathode, the
ell voltage and energy consumption can be reduced by as much
s 30% at 0.4 A/cm2 [2,3]. The electrochemical reduction of
xygen in an alkaline environment has been the topic of many
esearches and the successful employment of silver [4–6] and
latinum [5,6] catalysts in oxygen-depolarized chlor-alkali cath-
des has already been reported. While an oxygen-depolarized
hlor-alkali cell significantly lowers energy consumption per
nit weight of chlorine and caustic, optimization of process
arameters to achieve maximum current efficiency is remained
lmost untouched. The only published work that is somewhat
elated to this issue was carried out by researchers at Los Alamos
ational Laboratory to minimize peroxide formation in an ACA

ell using ELAT® cathodes [2,3]. As far as we know, there

as been no published literature on a thorough investigation of
he effects of operating parameters on the CCE of ACA mem-
rane cells. Besides, no open literature was found to explore
horoughly the performance of the newly developed ESNS®
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athode by E-Tek Inc. This issue was thus chosen for further
nvestigation.

Nevertheless, the ACA system shows a complex behavior
nd there is a great energy expense associated with the process
arameters variations in the ACA process. A common approach
o design optimization is to perform experiment with the design
ariables, by trial and error or one at a time, until the first feasible
esign is found. However, to complete the design process such
n approach may be prolong and expensive when multiple fac-
ors are involved. An important issue in experimentation is how
o design the experiments in order to explore and optimize the

ultidimensional parameter space, minimizing the number of
rials required to achieve a unique solution. Approach for exper-
mental design include techniques such as factorial designs [7],
eterministic optimization algorithms like holographic search
8] and split & pool methods [9,10], or stochastic procedures
ike simulated annealing and genetic algorithms (GAs). Another
fficient technique comprises the combination of an artificial
eural network (ANN) and a GA. Thus whereas the ANN finds
he internal relationship between variables in the experimen-
al data, the optimization algorithm (GA) optimizes variables,
aking into account the knowledge extracted by the ANN. The
ombination of the two artificial intelligence techniques is now
eing widely applied [11–15]. It is believed that GAs could be
sed as powerful techniques to solve complex and real-word
roblems.

This paper thus presents part of our research on the implemen-
ation of oxygen-depolarized cathodes in a modified commercial

embrane cell using ESNS® cathode. The study focuses on
elected performance characteristic of the cell (CCE). It is the
rst time that GA is implemented for optimization of CCE

n ACA technology. As our study to implement gas diffu-
ion electrode in chlor-alkali cell arose from fuel cell research,
he arrangement of our ACA cell and PEM type fuel cell is
elatively analogous. For example, while the most of oxygen-
epolarized chlor-alkali cells [4,6,16–18] can be classified as
nite gap (where the cathode side is divided by the gas-diffusion
athode into disparate oxygen and caustic compartments) we
mplemented a fuel cell-like, zero-gap arrangement. In this
onfiguration, there are no independent oxygen and caustic com-

artments and the oxygen cathode stays in intimate contact with
he ion-exchange membrane. In this way, both the flooding of
he cathode by the NaOH solution and the ohmic drop have been

eaningfully reduced [2,3].
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w

Fig. 1. Components of the memb
ring Journal 140 (2008) 157–164

. Materials and methods

.1. Chemicals used

The brine was prepared from analytical grade NaCl (Merck
nc.) using deionized water. All other chemicals used for analysis
ere also Analar grade.

.2. Experimental set-up

The electrochemical cell was a divided filter-press type
Micro-flow cell, Electrocell AB, Sweden) with 10 cm2

3.3 cm × 3 cm) electrode area (Fig. 1) that was modified to
llocate gas diffusion electrode. The cell used in this study
mployed a commercially available, 10 cm2 gas diffusion elec-
rodes (A2STD ESNS®) with a carbon-supported platinum
atalyst (E-TEK Inc.). The catalyst layer contained 10% of
arbon-supported (Vulcan XC-72) platinum with a total Pt load-
ng of 0.6 mg cm−2. The nickel screen side of the cathode
emained in intimate contact with the carboxylic side of the
on exchange membrane (Flemion® 892, Asahi Glass Co.). The
node was a standard coated titanium plate (DSA®-Cl2). The cell
ow fields were made from ∼2 mm Teflon. The cell performance
valuation was carried out in an ACA set-up developed in our
aboratory. Fig. 2 shows the process flow diagram of the set-up
sed in this study. The anolyte feed tank was heated by jacketed
eater and its temperature was monitored by digital thermome-
er. Anolyte pH was measured by an on-line pH-meter inserted
n anolyte feed tank. The anolyte was recirculated in separate
ydraulic circuit throughout the experiment by magnetic pump
ccording to Fig. 2. The overflow from the anolyte compartment
f the electrolysis cell was sent to a gas–liquid separator. Dur-
ng electrolysis, Cl2 gas produced was absorbed by 2 M NaOH
olution in TK-103 and then TK-104, respectively. The cath-
de chamber was fed with oxygen at atmospheric pressure. The
xygen stream was heated and humidified by a jacketed bubble
olumn humidifier (HF). The oxygen temperature and extend of
umidification was adjusted before entering the cathode com-
artment. In order to minimize corrosion, the cathode gas feed
ine was equipped with two valves that would stop the oxygen

ow and replace it with nitrogen upon a power loss. Constant cur-
ents were applied to the cell and the corresponding cell voltages
ere measured by a multimeter. After each test, the set-up was
ashed thoroughly with deionized water drained and dried. Pre-

rane cell used in this study.
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Fig. 2. Process flow diagram of the ACA set-up utilized: TK-101 (brine recirculation tank). TK-102 (NaOH product tank). TK-103, 104 (chlorine absorption tanks).
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P-101, 102 (gas–liquid separator). FM-101 (liquid flow meter). FM-102 (ox
C-101 (DC power supply). H-101, 102 (jacketed electrical heater). P-101 (

humidifier). M.F.Cell (membrane flow cell).

iminary tests showed in order to produce determinable chlorine
nd caustic, the electrolysis run time should be at least 150 min.

.3. Analysis

CCE was determined from titration of the sodium hydroxide
amples with standardized 1.0 M HCl solution (Fisher) against
henolphthalein. The peroxide content in the NaOH solution was
ound spectrophotometrically. Fresh samples of sodium hydrox-
de were mixed with a known amount of potassium ferricyanide
olution in aqueous NaOH. The peroxide content was deter-
ined from a decrease of ferricyanide absorption at 418 nm [19].
ue to the very weak acidic properties of hydrogen peroxide

pKa = 11.75 [20]), the volume of the acid used to neutralize the
aOH sample corresponded to the sum of the sodium hydrox-

de present in the sample and the NaOH produced as a result of
ydro peroxide anion (HO2

−) protonation [2]. Since the latter
uantity was also equal to the amount of NaOH that would form
ecause of HO2

− decomposition, the CCE quoted in this study
re corrected for peroxide.

.4. Mathematical modeling and optimization

.4.1. ANN
Artificial neural network modeling is essentially a black box

peration linking input to output data using a particular set of
onlinear basis functions. ANNs consist of simple synchronous
rocessing elements, which are inspired by biological nervous
ystems and the basic unit in the ANN is the neuron [21]. ANNs

re trained using a large number of input data with corresponding
utput data (input/output pairs) obtained from actual measure-
ent so that a particular set of inputs produces, as nearly as

ossible, a specific set of target outputs. Training consists of

r
s
m
i

flow meter). T-101, 102 (temperature indicator). pH-101 (on-line pH meter).
e magnetic pump). H.I. (humidification indicator). PG (pressure gauge). HF

djusting the weight associated with each connection (synapse)
etween neurons until the computed outputs for each set of data
nputs are as close as possible to the experimental data outputs. It
s well known that during the design and training of ANNs, fac-
ors such as (i) architecture of the ANN; (ii) training algorithm;
nd (iii) transfer function need to be considered eventually. The
erm “architecture of the artificial neural network” refers to the
umber of layers in the ANN and the number of neurons in each
ayer. In general, it consists of an input layer, one or more hid-
en layers and one output layer. The number of neurons in the
nput layer and the output layer are determined by the numbers
f input and output parameters, respectively. In order to find the
ptimal architecture, number of neurons in the hidden layer has
o be determined (this number will be determined based on the
NN during the training process by taking into consideration

he convergence rate, mapping accuracy, etc.).
The most widely used network type is multi-layered feed-

orward network trained with the back-propagation learning
lgorithm [22,23]. The back-propagation learning algorithm is
ased on the selection of a suitable error function, whose values
re determined by the actual and predicted outputs of the net-
ork. The model with lowest prediction error is being used as

he final and optimal model.

.4.2. GA
These algorithms are optimization strategies developed based

n the principles of natural selection. The GA begins with a
opulation of represented random solutions in some series of
tructures. After this first step, a series of operators, are applied

epeatedly, up to convergence is gained. In fact, the optimization
trategy based in this approach can be described as a global opti-
ization method with the benefit not to be dependent upon the

nitial value to achieve the convergence. Probably the most sig-
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ificant drawbacks are the computer time and burden required.
he GA operators are coding, reproduction, crossover and muta-

ion. These two last operators are implemented to create new and
etter populations. This algorithm carries on until a termination
riterion specified according to the need to achieve the goal in
he optimization problem is achieved (see Fig. 3). The determi-
ation of the parameters is made through the implementation of
n objective function that represents the problem in an appro-
riate way. The development of the GA follows some steps as
oding, determination of the population size, selection (repro-
uction), crossover and mutation. In the binary codification, the
ollowing parameters have to be analyzed in order to achieve
good optimization algorithm performance: population sizes,

hosen to be analyzed between 10 and 40; crossover operator,
n two forms to know, uniform and of single-point; the selection
orm adopted is the tournament one [24]. The elitism and the
utation (Jump and Creep mutation) are fixed values.

. Results and discussion

A great number of experiments were carried out in this study

o examine the effect of each process parameter separately. In
ach series of experiments, only one process parameter was
hanged and the others were fixed. After that, a multilayer per-
eptron neural network, with seven input nodes, ten nodes in the

Fig. 3. GA developed in this study.
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Fig. 4. ANN model utilized in this study.

idden layer, and one output node, was developed to relate exper-
mental data (Fig. 4). In the training step, a larger part of the data
80%) was used to train the model with the LM back propaga-
ion training method and the remaining data (20%) were used for
alidation. Indeed, 60 experiments were done and 42 data were
hosen for training and validation of the neural network. The
odes in hidden layers did the mapping function of MLP. Their
umber was chosen to avoid under or over fitting. The initial
eights of the neural network were chosen randomly between

−1, 1]. The parameters modified iteratively until convergence
as reached.

.1. Effect of brine concentration

The effect of brine concentration on CCE was studied and

he results are shown in Fig. 5. As seen, like conventional mem-
rane cells [25] and like ACA zero-gap cells with ELAT® [2,3],
he CCE increases linearly with brine concentration within the
xperimental range studied. A good agreement between exper-

ig. 5. The effect of brine concentration on CCE at anolyte: temperature (80 ◦C),
H (2.5), flow rate (350 cm3/min), oxygen: flow rate (700 cm3/min), temperature
80 ◦C), and current density (0.2 A/cm2).
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mental data and the predicted ANN results can be seen. At
ow brine concentrations, the low CCE is due to the mem-
rane swelling and permeability. Consequently, more water is
ransported through the membrane yielding lower caustic con-
entration [26]. As could be expected, the CCE also increases
ith brine concentration because of decreased caustic crossover

hrough the membrane. One may suspect the partial oxygen evo-
ution [27,28] on the DSA® anode to contribute to the above
henomena. This reaction produces hydronium cations and its
elative contribution to the measured current increases with the
ecrease in brine concentration [27,28].

.2. Effect of anolyte pH

This is the first time that the effect of anolyte pH on CCE
f an ACA cell is being studied. The corresponding results are
epresented in Fig. 6. The similarity between experimental data
nd ANN predicted data is obvious. The results show that CCE
ncreases with increasing anolyte pH within the experimental
ange studied. It is believed that an increase in brine acidity
decease in pH) may produce an increased H3O+ flux across the
embrane, which may result in a low membrane resistance, low
CE and low NaOH concentration. However, like conventional
embrane cells reported earlier [25] the chlorine current effi-

iency decreases with increasing brine pH due to the production
f by products such as hypochlorite and chlorate in anolyte at
igher pH’s [29].

.3. Effects of anolyte and oxygen temperature

The non-isothermal effect of an ACA cell was studied for
he first time and the results are shown in Figs. 7 and 8. We
id not see a very good agreement between experimental data
nd ANN predicted data in both cases especially for oxygen
emperature. This may be due to the low precision of some exper-
mental data because of hard experimental conditions. The result

hows that CCE increases with temperature in both cases. At low
emperatures, the rate of oxygen reduction is low and this low-
rs CCE profoundly [25]. Another point that should mention
s that the electrical conductivity of the electrolyte is a func-

ig. 6. The effect of anolyte pH on CCE at anolyte: concentration (210 g/L)
emperature (75 ◦C), flow rate (350 cm3/min), oxygen: flow rate (500 cm3/min),
emperature (75 ◦C), and current density (0.2 A/cm2).
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ig. 7. The effect of anolyte temperature on CCE at anolyte: concentration
230 g/L), pH (2.5), flow rate (350 cm3/min), oxygen: flow rate (900 cm3/min),
emperature (75 ◦C), and current density (0.2 A/cm2).

ion of concentration and temperature. At high temperatures,
he high conductivity of anolyte solution lowers the cell voltage
nd therefore energy consumption of the chlor-alkali set-up will
e low as conventional membrane cells [25]. Consequently the
conomic and energy factors are in favor of the technology that
tilizes higher temperatures.

.4. Effects of anolyte and oxygen flow rates

To see the effects of anolyte and oxygen flow rates on perfor-
ance of ACA cells, we studied each parameter individually. As

een (Figs. 9 and 10), the agreement between experimental data
nd ANN predicted data is good. By increasing anolyte flow rate
velocity), CCE increases. This result is in complete agreement
ith the conventional membrane cells [25]. This may be because

he amount of attached Cl2 bubbles on anodic side of the mem-
rane and those remained within anolyte are reduced [30,31]. In
act, the bubbles decrease the effective area of the membrane by
linding effects especially at low anolyte flow rates. The effect
f oxygen flow rate on CCE was not linear also. The results
hows that CCE increases with increasing oxygen flow rate as

hat observed with ELAT® [2,3]. The increase of CCE at higher

ates of oxygen flow rate most likely results from the effect of gas
ow on the effectiveness of caustic removal from the electrode.
igh gas velocity in the cathode chamber makes the removal of

ig. 8. The effect of oxygen temperature on CCE at anolyte: concentration
230 g/L), pH (2.5), flow rate (250 cm3/min), temperature (70 ◦C), oxygen: flow
ate (500 cm3/min), and current density (0.2 A/cm2).
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ig. 9. The effect of anolyte flow rate on CCE at anolyte: concentration
280 g/L), pH (2.5), temperature (75 ◦C), oxygen: flow rate (700 cm3/min),
emperature (75 ◦C), and current density (0.3 A/cm2).

austic from the electrode pores easier than low velocities. In
ery low gas velocities, we had accumulation of viscous caustic
n the cathode chamber.

.5. Effect of current density

The cell was operated at six current densities between 0.1 and
.4 A/cm2 as industrial membrane cells. The results (Fig. 11)
how that the agreement between experimental data and ANN
redicted data is good. The decrease in CCE with increasing
urrent density is similar to ELAT® results especially at low cur-
ent density [2,3]. Effect of current density on CCE is believed
o originate from the different kinetics of desirable complete 4-
lectron reduction and unwanted partial 2-electron reduction of
xygen:

2 + 2H2O + 4e → 4OH− (1)

2 + H2O + 2e → OOH− + OH− (2)
n fact, the increase of current density shifts the cathode potential
owards the more negative values and this phenomenon affects
he relative rates of the two reactions. Higher current densities
re likely to decrease CCE by increasing membrane swelling

ig. 10. The effect of oxygen flow rate on CCE at anolyte: concentration
250 g/L), pH (2.5), flow rate (400 cm3/min), temperature (70 ◦C), oxygen:
emperature (70 ◦C), and current density (0.15 A/cm2).
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ig. 11. The effect of current density on CCE at anolyte: concentration (270 g/L),
H (3), flow rate (450 cm3/min), temperature (80 ◦C), oxygen: temperature
80 ◦C), flow rate (800 cm3/min).

nd permeability [26], by more significant contribution of the
xygen evolution reaction as well as by membrane blinding by
hlorine gas in anode side.

.6. Optimization of CCE

The optimization using the ANN model instead of mathemat-
cal modeling took into account operational conditions of the
CA cell. The chosen parameters to implement the optimiza-

ion were those with more sensitivity in the chlor-alkali process.
he objective is to maximize CCE, using as main variables the
rine concentration, the anolyte temperature, the anolyte pH, the
nolyte flow rate, the oxygen flow rate, the oxygen temperature
nd the current density, in seven variables. All other variables
uch as the extent of humidification and time were fixed (satu-
ated oxygen and 150 min). In this way, the objective function
pplied to the optimization is the CCE. Table 1 shows the valid
arameters limits to be optimized according to the experimen-
al data. The parameters to be optimized were codified with the
inary form, based and adapted of many published literature
orks [32–34]. In genetic algorithm, the continuous form was
sed with Gradient Descent method. Table 2 shows the selected
enetic algorithm control parameters for the ACA process.

ANN and GA were implemented using M-file script program-
ing in MATLAB platform. After 20 times running the genetic
lgorithm and using the average of the results, CCE reached
8.53%. Table 3 shows the optimization results. To examine the
esults we ran the ACA set-up near the optimum point and the
orresponding CCE was 97.67%.

able 1
imits of validity of the operational parameters to be optimized

rocess parameters Lower limits Upper limits

rine concentration (g/L) 200 300
nolyte temperature (◦C) 55 90
nolyte pH 2 4.5
nolyte flow rate (cm3/min) 250 450
xygen flow rate (cm3/min) 500 1000
xygen temperature (◦C) 57.5 84
urrent density (A/cm2) 0.1 0.4



T. Mirzazadeh et al. / Chemical Enginee

Table 2
Parameters of genetic algorithm utilized in the optimization

Genetic parameters Values

Population size 20
Uniform crossover and single-point (%) 80
Jump mutation rate (%) 1
Creep mutation (%) 2
Generations 250

Table 3
The results of optimization by GA

Process parameters Value

Brine concentration (g/L) 287
Anolyte temperature (◦C) 80
Anolyte pH 2.7
Anolyte flow rate (cm3/min) 408
Oxygen flow rate (cm3/min) 841.4
Oxygen temperature (◦C) 79
C
C
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[

[

[

[

[

H.S. Burney, N. Furuya, F. Hine, K.-I. Ota (Eds.), Proceedings of the Chlor-
urrent density (A/cm2) 0.33
austic current efficiency (%) 98.53

. Conclusion

In this study, a modified commercial electrochemical cell
ith the state-of-the-art ESNS® cathode has been optimized to
aximize CCE. Optimization problem was included two steps.

n step, one, instead of using the mathematical modeling, a mul-
ilayer perceptron neural network with the LM back propagation
raining algorithm was implemented to relate experimental data.
n this step we studied the effects of seven process parameters
ndividually also. The experimental results revealed that CCE
ncreases by increasing in brine concentration and anolyte and
xygen temperatures and flow rates and decreases by increasing
n current density within the experimental range studied. The
esults showed that it is not necessary to pressurize ESNS® con-
rary to ELAT® [2,3] in ACA zero-gap cells. A good agreement
etween experimental data and the predicted ANN results was
een except for oxygen temperature data. In step two, the genetic
lgorithm was used as powerful optimization technique, which
ave good solutions for this problem. A simple GA was used in
his study to search the seven-dimensional spaces. The popula-
ion size used was 20 as recommended [32]. The crossover rate
f 80% was satisfactory to supply good results. The program of
ptimization was run for 20 times. The average obtained CCE
as generally comparable with the current industrial standard

or membrane cells, i.e. 93–95%. The closeness of correspond-
ng anolyte and oxygen temperatures shows that non-isothermal
peration of ACA cell would not maximize CCE.
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